Paper Details  
 
   

Has Bibliography
2 Pages
447 Words

 
   
   
    Filter Topics  
 
     
   
 

How Quarks Work

Quarks only exist inside hadrons because they are confined by the strong force fields. So you can not measure their mass by isolating them. There is no real way of telling a quarks mass, but the quantity scientists call quark mass is related to the equation F=ma. This will tell you how an object will behave when force is applied. The parameter that scientists call quark mass controls its acceleration when a force is applied. It is set to give what would be the best match between theory and experiment for the ratio of masses or various hadrons and for behavior of quarks in high energy experiments. But none of these can actually tell us the quarks mass. Leptons are electron type particles. They have a tau-minus which is like an electron with the mass of 1.784 GeV/c2. And its antiparticle is the tau-plus it has the same mass but a negative charge. In 1995 a Nobel Prize was given for this discovery. Every lepton and quarks carries some charge like quantum number labels, and each has a distinct antiparticle partner with opposite values for those labels. Like the antiparticle of an electron is a positron and it has exactly the same mass as an electron but a positive charge. Charged bosons always have a antiparticle partner of opposite charge and equal mass. For zero charge mesons with different types of quark and antiquark, there is an antiparticle partner that reverses the role of quark and antiquark. Most people see particles as protons, neutrons, and electrons matter particles, and their antiparticles are then antimatter. The term matter is then extended to include all quarks, all negatively charged leptons, and left handed neutrinos. Anti-matter is any particle built from Antiquarks, positively charged leptons, and right handed neutrinos. A particle made from quarks like baryon is called matter. Just as a particle made from antiquarks such as the antibaryon is called anti matter. For bosons there is no way to distinct matter and antima...

Page 1 of 2 Next >

    More on How Quarks Work...

    Loading...
 
Copyright © 1999 - 2024 CollegeTermPapers.com. All Rights Reserved. DMCA